RinearForm

Software Engineering Vs. Moore

BB

1201

A question...

...how many times would one have to fold a piece of paper in order for the thickness to reach the moon?

103 folds - as thick as the width of the known universe **Exponential growth** - human brains think linearly...

There is a well known exponential law in our industry

Moore's law

The exponential growth in compute power allows us to build today what was impossible yesterday

earForm

Three Mile Island What was the root cause?

Pressurised water reactors A simple architecture does not imply a simple implementation.

- >>> Condensate polisher leaks water into pneumatic system
- ➡→ Air pressure falls
- ➡→ Main water pumps to secondary cooling close
- ➡+ Loss of water from secondary cooling
- ➡→ Backup water pumps start, but...
- ➡→ No water as backup valves closed!
- ➡→ Heat exchange with primary coolant stops
- Reactor "SCRAMs" control rods dropped
- ⇒ Primary coolant water overheats as fuel rods still hot
- ➡→ Pressure relief valve opens, but fails to close
- Pressure relief valve indicator seems to show closed!
- ➡→ 13 seconds into accident, already in LOCA
- ⇒ Emergency water is injected, but then shut off
- ➡ Primary coolant drains away
- ➡→ Reactor core partially exposed
- ➡→ Partial meltdown with hydrogen bubbles

Some Historical Trends – What's been happening

CODE VOLUME

1980s ~ 1M LOC monoliths 1990s ~ 1M LOC monoliths 2000s ~ 50K LOC SOA 2010s ~ < 500 LOC micro-services

ITERATION TIMES

1980s (Waterfall) ~ 1year 1990s (Early agile scrum) ~ 3 months 2000s (Agile XP et al) ~ 2 weeks 2010s (Extreme agile) ~ 1 day RELEASE CYCLES

1980s ~ 2/3 years 1990s ~ < 1 year 2000s ~ 3 month 2010s ~ 1 week and in some cases < 1 day

Technology Enablers – What the disruptors do

CLOUD

 Capex, h/w lead times, capacity planning

- Compute power commoditized.
- All infrastructure is code, all costs are operational, capacity scales elastically

CONTAINERS

- Operations team
- The 'Runs on my machine' Problem– solved
- DevOps, continuous delivery pipelines, immutable deployments

ARCHITECTURE

- Monolith -> SOA -> micro-services
- Enabled by rapid deployment pipeline and elastic infrastructure
- Reduce the gap between development and production

LANGUAGES

- High ceremony, object oriented, closed source, specialist developers
- Low ceremony, dynamic languages, full stack polyglot developers
- Incremental application development
- Open Source

Inhibitors – What's stopping you?

Organizational and development inertia

- Use technology as a catalyst for organizational change
- 'Reverse Conway's'

Politics'I don't see any role for our ops group going forward'

Language / platform religion

Php / Cobol / Whatever is the best platform ever

4

5

2

3

Closed thinking – reluctance to adopt open source
Re-inventing the wheel

Fear of failure

Failure is OK – fail fast and learn fast

nearForm – What we do

Professional services company - specialize in helping large enterprises leverage disruptive technologies Doubled / Tripled revenues year on year since inception, now over 100 staff. 100+ projects shipped. Digital transformation-Consultancy, Training, and Co-Development

Innovation Delivery

Summary

EXPONENTIAL COMPUTE GROWTH

Enables creation of disruptive technology

EARLY ADOPTERS WIN BIG

TECHNOLOGY CAN DRIVE ORGANIZATIONAL CHANGE

